Recent N* results from photoproduction experiments at CLAS

Daria Sokhan IPN Orsay, France

On behalf of the CLAS collaboration and Jefferson Laboratory

Jefferson Lab

Contents:

Nucleon excitation spectrum

Meson photoproduction

Polarisation observables

Jefferson Lab, CLAS and photon beams

Selected results from:

Unpolarised target experiments – g8, 13

Polarised target experiments – FroST, HDice

MENU 2010, WILLIAMSBURG, USA - 1 JUNE 2010

DARIA SOKHAN

Nucleon excitation spectrum

Little known - predictions primarily from the Lattice and phenomenological models (eg: constituent quark-models, di-quark model...)

Many more
 resonances predicted
 by some models than
 observed

Not present in nature or just not yet observed?

 Insufficient experimental observables measured to resolve ambiguities.

N*	Status	$\mathrm{SU}\left(6 ight)\otimes\mathrm{O}\left(3 ight)$	Parity	Δ^*	Status	$\mathrm{SU}\left(6 ight)\otimes\mathrm{O}\left(3 ight)$
P ₁₁ (938)	****	(56,0 ⁺)	+	P ₃₃ (1232)	****	$(56, 0^+)$
$S_{11}(1535)$	****	$(70, 1^{-})$				
$S_{11}(1650)$	****	$(70, 1^{-})$		$S_{31}(1620)$	****	$(70, 1^{-})$
D ₁₃ (1520)	****	$(70, 1^{-})$	-	D ₃₃ (1700)	***	$(70, 1^{-})$
$D_{13}(1700)$	***	$(70, 1^{-})$				
$D_{15}(1675)$	****	$(70, 1^{-})$				
P ₁₁ (1520)	****	$(56, 0^+)$		$P_{31}(1875)$	****	$(56, 2^+)$
$P_{11}(1710)$	***	$(70, 0^{\pm})$	+	$P_{31}(1835)$		$(70, 0^+)$
P_{11} (1880)		$(70, 2^{\pm})$				
$P_{11}(1975)$		$(20, 1^+)$				
$P_{13}(1720)$	****	$(56, 2^{+})$		$P_{33}(1600)$	***	$(56, 0^+)$
$P_{13}(1870)$	*	$(70, 0^{-})$		$P_{33}(1920)$	***	$(56, 2^+)$
P ₁₃ (1910)		$(70, 2^{-})$	+	$P_{33}(1985)$		$(70, 2^+)$
P ₁₃ (1950)		$(70, 2^{-})$				
P ₁₃ (2030)		$(20, 1^{-})$				
$F_{15}(1680)$	****	$(56, 2^+)$		$F_{35}(1905)$	****	$(56, 2^+)$
$F_{15}(2000)$	**	$(70, 2^{-})$	+	$F_{35}(2000)$	**	$(70, 2^+)$
$F_{15}(1995)$		$(70, 2^+)$				
$F_{17}(1990)$	**	$(70, 2^{-})$	+	$F_{37}(1950)$	****	$(56, 2^+)$

Meson Photoproduction

Real **photons** – well understood EM interaction, giving access to EM properties of resonances.

Meson photoproduction – for pseudo-scalar mesons:

• 4 invariant complex reaction amplitudes

• 16 single and double polarisation observables

Partial Wave Analysis (PWA) fits used to extract resonance parameters (eg: angular momentum, parity).

Require measurements of cross-section and 7 additional, carefully chosen polarisation observables to remove ambiguities.

W.-T. Chiang and F. Tabakin, Phys. Rev. C 55, 2054 (1997).

Different polarisation observables are extracted through different combinations of polarised beams and targets and measurements of recoil polarisation.

DARIA SOKHAN

Polarisation Observables

Usual symbol	Helicity representation	Transversity representation	Experiment required ^{a)}	Туре
do/dt	$ N ^{2} + S_{1} ^{2} + S_{2} ^{2} + D ^{2}$	$ b_1 ^2 + b_2 ^2 + b_3 ^2 + b_4 ^2$	{-;,}	
$\Sigma \mathrm{d}\sigma/\mathrm{d}t$	$2 \operatorname{Re}(S^*_1S_2 - ND^*)$	$ b_1 ^2 + b_2 ^2 - b_3 ^2 - b_4 ^2$	$L(\frac{1}{2}\pi,0);-;-]$	\leq
T dø/dt	$2\mathrm{Im}(S_1N^* - S_2D^*)$	$ b_1 ^2 - b_2 ^2 - b_3 ^2 + b_4 ^2$	$\{-; y; -\} \\ \{L(\frac{1}{2}\pi, 0); y; y\}$	S
P do/dt	$\sum_{n=1}^{\infty} Im(S_2N^* - S_1D^*)$	$ b_1 ^2 - b_2 ^2 + b_3 ^2 - b_4 ^2$	$\{-; -; y\}$ $Z\{t_{1}(\frac{1}{2}, 0); p, y\}$	
Gio/dt	$-2Im(S_1S_2^* + ND^*)$	$2Im(b_1b_3^*+b_2b_4^*)$	$\{L(\pm \frac{1}{4}\pi); z; -\}$	
HOOKAN	$-2\mathrm{Im}(S_1D^*+S_2N^*)$	$-2\text{Re}(b_1b_3^* - b_2b_4^*)$	$\{L(\pm \frac{1}{2}\pi); x_{1}, -\}$	DT
Edo/dt	$ S_2 ^2 - S_1 ^2 - D ^2 + N ^2$	$-2\text{Re}(b_1b_3^* + b_2b_4^*)$	$\{c; z; -\}$	DI
Franci	$2\operatorname{Re}(S_2D^* + S_1N^*)$	$2 \text{Im}(b_1 b_3^* - b_2 b_4^*)$	Zand	
O _x do/dt	$-2 \text{Im}(S_2 D^* + S_1 N^*)$	$-2\text{Re}(b_1b_4^* - b_2b_3^*)$	$\{L(\pm \frac{1}{4}\pi); -; x'\}$	
Dido/ar	$-2Im(S_2S_1^* + ND^*)$	$-2 \text{Im}(b_1 b_4^* + b_2 b_3^*)$	$L(\pm \pi), ; z^{+}$	DD
$C_{x}d\sigma/dt$	$-2\text{Re}(S_2N^* + S_1D^*)$	$2 \text{Im}(b_1 b_4^* - b_2 b_3^*)$	$\{c; -; x'\}$	BK
$C_z d\sigma/dt$	$ S_2 ^2 - S_1 ^2 - N ^2 + D ^2$	$-2\text{Re}(b_1b_4*+b_2b_3*)$	$\{c; -; z'\}$	
$\overline{T_x d\sigma/dt}$	$2\operatorname{Re}(S_1S_2^* + ND^*)$	$2\text{Re}(b_1b_2^* - b_3b_4^*)$	$\{-; x; x'\}$	
$T_z d\sigma/dt$	$2\text{Re}(S_1N^* - S_2D^*)$	$2 \text{Im}(b_1 b_2^* - b_3 b_4^*)$	$\{-;x;z'\}$	тр
$\tilde{L_{x}}d\sigma/dt$	$2\operatorname{Re}(S_2N^* - S_1D^*)$	$2 \text{Im}(b_1 b_2^* + b_3 b_4^*)$	$\{-; z; x'\}$	IK
$L_z d\sigma/dt$	$ S_1 ^2 + S_2 ^2 - N ^2 - D ^2$	$2\text{Re}(b_1b_2^* + b_3b_4^*)$	$\{-; z; z'\}$	

Complete
 measurement
 requires cross section, Σ, Τ, P and
 four double polarisation
 observables!

- a) Notation: $\{P_{\gamma}; P_T; P_R\}$
 - P_{γ} Beam polarisation
- $L(\theta)$ Linear polarisation at angle θ to scattering plane
 - *C* Circular polarisation
 - P_T Direction of target polarisation
 - *P_R* Component of recoil polarisation measurement

I. Barker, A. Donnachie, J. Storrow, *Nucl. Phys.* **B 95**, 347 (1975)

DARIA SOKHAN

Measuring polarisation observables eg: beam asymmetry, Σ

$$\rho_f \frac{d\sigma}{d\Omega} = \frac{1}{2} \left(\frac{d\sigma}{d\Omega} \right)_{unpol} \left\{ 1 - \frac{P_{\gamma}^{lin} \sum \cos 2\phi}{\rho_f \frac{d\sigma}{d\Omega}} \right\}$$

 $N_{\Box} = N_{\theta} (1 - P\Sigma \cos 2\varphi)$ $N_{\perp} = N_{\theta} (1 + P\Sigma \cos 2\varphi)$ $\Sigma P \cos 2\varphi = \frac{N_{\Box} - N_{\perp}}{N_{\Box} + N_{\perp}}$

Removesdetectorsystematics

MENU 2010, WILLIAMSBURG, USA - 1 JUNE 2010

DARIA SOKHAN

N* programme

EM interaction does not conserve isospin – multipole amplitudes contain **isoscalar** and **isovector** contributions of EM current.

Both proton and neutron targets are therefore required to study different isospin couplings.

Different meson production channels are sensitive to different resonances.

CLAS N* programme is on track to for a range of meson channels, with and **neutron**, using both **polarised** and photon beams.

The Jefferson Laboratory

CLAS:

Multi-layer onion of detectors for charged and neutral particles.

 Very large angular coverage:
 Near full coverage in azimuthal angle and from 8° to 140° in scattering angle.

 1.4 km racetrack electron beam accelerator with two LinAc sections.

Operating at up to 6 GeV.

DARIA SOKHAN

The Photon Beam

Produced via bremsstrahlung of electron beam in a radiator.

 Linear photon polarisation (up to > 90%): unpolarised electrons through highly ordered crystalline radiator, typically 20 – 50 µm diamond.

Crystal orientation chosen to produce a "coherent" peak of polarised photons at the required energy.

DARIA SOKHAN

Recoil polarisation

Currently unable to measure recoil nucleon polarisation, although possibility is a recoil polarimeter similar to that used with the Crystal Ball at MAMI, Mainz (*Dan Watts, Edinburgh*).

Hyperons are "self-analysing" – polarisation can be determined through the angular distributions of their weak decay products:

MENU 2010, WILLIAMSBURG, USA – 1 JUNE 2010

DARIA SOKHAN

Unpolarised target experiments

Two recent experiments:

G8: Linearly polarised photons in range 0.9 – 2.1 GeV on LH_2 target. Measurements on the **proton** of:

✓ beam asymmetry from • $\gamma p \rightarrow \pi^+ n$, $\pi^0 p$ (see M. Dugger's talk) • $\gamma p \rightarrow \eta p$ • $\gamma p \rightarrow \eta' p$

beam-recoil double polarisation observables from • $\gamma p \rightarrow KY (K^+\Lambda, K^+\Sigma^0, K^0\Sigma^+)$

Complements earlier G1 experiment with circularly polarised photons

G13: Linearly (1.1 - 2.3 GeV) and circularly (0.4 - 2.5 GeV) polarised photons on LD₂ target. Complementary measurements on the **neutron**.

DARIA SOKHAN

G8b preliminary photon asymmetry results - **K**⁺Λ (Craig Paterson, Glasgow)

- Compared with previous results from GRAAL (red)
 - 7 energy bins 50 MeV wide
 - Range 1175 1475 MeV
 - Good agreement with previous results

DARIA SOKHAN

G8b preliminary photon asymmetry results - **K**⁺Λ (*Craig Paterson, Glasgow*)

- Compared with previous results from LEPS (red)
 - 6 energy bins 100 MeV wide
 - Range 1550 2050 MeV
 - More bins for our data

Increase the angular coverage to backward angles

LEPS also recently have some consistent, new points at backward angles. Hicks et al., PRC 76, 042201(R) (2007).

DARIA SOKHAN

G8b preliminary recoil polarisation results - **K**⁺Λ (Craig Paterson, Glasgow)

DARIA SOKHAN

G8b preliminary O_x results - $K^+\Lambda$ (Craig Paterson, Glasgow)

Comparison with Regge-plus-Resonance model from Gent group

Large Polarizations

 Some evidence for an important role for missing D₁₃(1900) state

 Poor agreement at low energy

DARIA SOKHAN

G13: How free is the nucleon? (Russell Johnstone, Glasgow)

Compare photon asymmetry of free and bound proton: $\gamma p(n) \rightarrow \mathbf{K}^+ \Lambda^0(n)$ (G13 data) with $\gamma p \rightarrow \mathbf{K}^+ \Lambda^0$ (G8 data)

G13 preliminary beam asymmetry results – $K^0\Sigma$ (*Neil Hassal, Glasgow*)

DARIA SOKHAN

G13 preliminary beam asymmetry results – K⁰Λ⁰ (*Neil Hassal, Glasgow*)

DARIA SOKHAN

G13 preliminary K^{*0} and $\Sigma^{-}(1385)$ identification (Paul Mattione, Rice)

Cut on overlap between invariant masses of K^{*0} and Σ^{-}

MENU 2010, WILLIAMSBURG, USA - 1 JUNE 2010

DARIA SOKHAN

G13 preliminary beam asymmetry results – $p \pi^-$ (*Daria Sokhan*)

Previous data (Alspector, PRL 28, 1403 ('72), Abrahamian, SJNP 32, 69 ('80), Adamyan, JPG 15, 1797 ('89)).

- MAID 07 - SAID 09

G13 preliminary beam asymmetry results – $p \pi^-$ (*Daria Sokhan*)

Previous data (Alspector, PRL 28, 1403 ('72), Abrahamian, SJNP 32, 69 ('80), Adamyan, JPG 15, 1797 ('89)).

— MAID 07 — SAID 09

DARIA SOKHAN

FroST – target for polarised protons

Beam: circularly and linearly polarised photons at 0.5 – 2.4 GeV.

Target: polarised butanol (C₄H₉OH)

Measurements of single and double polarisation observables from:

• $\gamma p \rightarrow \pi^0 p, \pi^+ n$

- $\overline{\gamma p} \rightarrow \pi^+ \pi^- p$
- γp→ηp
- $\gamma p \rightarrow KY (K^+\Lambda, K^+\Sigma^0, K^0\Sigma^+)$

G9a: Nov 2007 – Feb 2008 Longitudinal target polarisation

G9b: Mar – July 2010
 Transverse target polarisation

Trigger of at least one charged particle in CLAS

DARIA SOKHAN

FROST

Butanol target polarised via Dynamic Nuclear Polarisation (DNP)

 Polarisation maintained during experiment by 0.5 T superconducting holding coils – providing either a longitudinal or a transverse magnetic field.

Custom built dilution refrigerator maintains v. low temperature for long polarisation relaxation time.

Racetrack coils for transverse polarization

T at operation < 30 mK</p>

Polarisation > 90%

Relaxation time up to 4000 hours

DARIA SOKHAN

FroST: helicity asymmetry E in $\gamma \ p \to \pi^+ \ n$

(Steffen Strauch, USC)

MENU 2010, WILLIAMSBURG, USA - 1 JUNE 2010

DARIA SOKHAN

HDice – polarised neutrons

DARIA SOKHAN

In short...

Exciting experimental N* programme of meson photoproduction underway at CLAS

- Transversely and longitudinally polarised targets
- Experiments on both proton and neutron

HDice experiment expected to complete the set of polarisation measurements on a number of channels.

Approaching a model-independent analysis of meson photoproduction data, which promises much greater insight into the nucleon resonance spectrum.

Watch this space!

Thank you!

DARIA SOKHAN